Phosphorus Recycling from an Unexplored Source by Polyphosphate Accumulating Microalgae and Cyanobacteria—A Step to Phosphorus Security in Agriculture
نویسندگان
چکیده
Phosphorus (P), an essential element required for crop growth has no substitute. The global food security depends on phosphorus availability in soil for crop production. World phosphorus reserves are fast depleting and with an annual increase of 2.3% in phosphorus demand, the current reserves will be exhausted in coming 50-100 years. India and other Western countries are forced to import phosphorus fertilizers at high costs to meet their agricultural demands due to uneven distribution of phosphate rocks on earth. The present study from India, aims to draw attention to an unnoticed source of phosphorus being wasted as parboiled rice mill effluent and subsequent bio-recovery of the valuable element from this unconventional source. The research was conducted in West Bengal, India, a state with the highest number of parboiled rice mills where its effluent carries on an average ~40 mg/L of soluble phosphorus. Technology to recover and recycle this wastewater P in India in a simple, inexpensive mode is yet to be optimized. Our strategy to use microalgae, Chlorella sp. and cyanobacteria, Cyanobacterium sp., Lyngbya sp., and Anabaena sp. to sequester the excess phosphorus from the effluent as polyphosphate inclusions and its subsequent recycling as slow and moderate release phosphorus biofertilizers to aid plant growth, preventing phosphorus loss and pollution, is a contemporary venture to meet the need of the hour. These polyphosphate accumulating microorganisms play a dual role of remediation and recovery of phosphorus, preliminarily validated in laboratory scale.
منابع مشابه
Towards a luxury uptake process via microalgae--defining the polyphosphate dynamics.
Microalgae in waste stabilization ponds (WSP) have been shown to accumulate polyphosphate. This luxury uptake of phosphorus is influenced by the wastewater phosphate concentration, light intensity and temperature, but the dynamics of how these factors affect luxury uptake with respect to time are not understood. With improved understanding of the dynamics of this mechanism and how it could be m...
متن کاملFactors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds.
Phosphorus removal in waste stabilization ponds (WSP) is highly variable, but the reasons for this are not well understood. Luxury uptake of phosphorus by microalgae has been studied in natural systems such as lakes but not under the conditions found in WSP. This work reports on the effects of phosphate concentration, light intensity, and temperature on luxury uptake of phosphorus by WSP microa...
متن کاملMicrobial phylogenetic and functional responses within acidified wastewater communities exhibiting enhanced phosphate uptake.
Acid stimulated accumulation of insoluble phosphorus within microbial cells is highly beneficial to wastewater treatment but remains largely unexplored. Using single cell analyses and next generation sequencing, the response of active polyphosphate accumulating microbial communities under conditions of enhanced phosphorus uptake under both acidic and aerobic conditions was characterised. Phosph...
متن کاملCharacterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review
Phosphate minerals have long been used for the production of phosphorus-based chemicals used in many economic sectors. However, these resources are not renewable and the natural phosphate stocks are decreasing. In this context, the research of new phosphate sources has become necessary. Many types of wastes contain non-negligible phosphate concentrations, such as wastewater. In wastewater treat...
متن کاملPotential Impact of Dietary Choices on Phosphorus Recycling and Global Phosphorus Footprints: The Case of the Average Australian City
Changes in human diets, population increases, farming practices, and globalized food chains have led to dramatic increases in the demand for phosphorus fertilizers. Long-term food security and water quality are, however, threatened by such increased phosphorus consumption, because the world's main source, phosphate rock, is an increasingly scarce resource. At the same time, losses of phosphorus...
متن کامل